Fungi and aflatoxin B$_1$ in horse and dog feeds in Western Turkey

M. BASALAN*, S.E. HISMIIOGULLARI, A.A. HISMIIOGULLARI and A. FILAZI

* University of Kirikkale, Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Kirikkale, Turkey.

** University of Ankara, Faculty of Veterinary Medicine, Department of Pharmacy and Toxicology, Ankara, Turkey.

*** Biogentek Bioteknoloji Sis. ve Tic. Ltd. Sti., The University of Ankara, KOSGEB Technology Development Centre, Ankara, Turkey.

SUMMARY

To evaluate fungi growth and aflatoxin B$_1$ contamination in horse and dog feeds, total of 41 feed samples were examined with agar plate incubation and ELISA methods. Fungi growth of the horse feed was not exceeding maximum tolerable limits (0.97 x 104 CFU/g). Although dog foods should not contain any fungi contamination, slightly less than half of the tested dog foods had fungi growth. Both feeds had aflatoxin B$_1$ content in allowable limits (10 µg/kg), however, dog foods contain significantly higher aflatoxin B$_1$ content than horse feeds do (P ≤ 0.05) (6.69 µg/kg and 1.98 µg/kg, respectively). Fungi growth and aflatoxin B$_1$ content did not correlate in either group of feeds ($r^2 = 0.09$ and $r^2 = 0.30$, respectively). Surveillance of both fungi growth and aflatoxin contents of both types of feeds are necessary for the health of the animals.

KEY-WORDS: horse - dog - feed - fungi - aflatoxin B$_1$.

RÉSUMÉ

Les moisissure et l’aflatoxine B$_1$ dans la nourriture du cheval et du chien la Turquie occidentale. Par M. BASALAN HISMIIOGULLARI, E. SAHVER HISMIIOGULLARI, A. ADNAN et A. FILAZI.

Pour évaluer le développement de moisissures et la contamination par de l’aflatoxine B$_1$ dans la nourriture pour cheval et pour chien, 41 échantillons d’aliments ont été examinés par incubation sur agar et par dosage mycotoxique selon la méthode ELISA. Le développement de moisissures dans la nourriture pour cheval n’a pas dépassé les limites tolérables (0.97 x 104 CFU/g). Bien qu’on ne désire pas de moisissure dans les aliments pour chien, on a constaté la présence de contaminants dans presque la moitié des échantillons analysés. Dans les deux types d’aliments, le taux d’aflatoxine B$_1$ se trouve dans des limites tolérables (10 µg/kg). Toutefois, nous montrons que la teneur en aflatoxine B$_1$ est statistiquement plus élevée dans la nourriture pour chien que dans celle destinée aux chevaux (P ≤ 0.05) (6.69 µg/kg et 1.98 µg/kg, respectivement). Nous n’avons pas mis en évidence de rapport direct en développement fongique et teneur en aflatoxine et ce dans les deux types d’aliments testés ($r^2 = 0.09$ et $r^2 = 0.30$ respectivement). Toutefois, la surveillance de la contamination fongique et celle de la teneur en aflatoxine B$_1$ dans les aliments pour animaux est nécessaire afin d’assurer la salubrité de ces produits.

MOTS-CLÉS : cheval - chien - nourriture - moisissures - aflatoxine B$_1$.

Introduction

Agricultural crops can become contaminated by fungi during production, storage, processing and transportation when temperature and humidity conditions are suitable. Because fungi and their metabolites (mycotoxins) can present a major risk to human and animal health, producers seek to prevent fungal growth and avoid mycotoxins.

Hundreds of fungi species of more than twelve genera produce more than three hundreds identified mycotoxins which can pose a threat to health of all mammalian species [6, 7, 10, 22]. Besides temperature and moisture, other environmental factors such as plant composition and texture, plant stress and drought and insect damage allow mycotoxin-producing fungi to penetrate the skin of crops or grains [15]. One survey indicated that 25% of global agricultural commodities is contaminated with mycotoxins [5, 7]. Mycotoxicosis caused by chronic exposure to low doses are seen more frequently than that by acute exposure to high doses; acute and sub-acute intoxication occasionally occur when animals are exposed to high concentrations of mycotoxins such as aflatoxins (B$_1$, B$_2$, G$_1$, and G$_2$), Ochratoxin A, fusarium species (deoxynivalenol, nivalenol, T-2 toxin, zearalenone and fumonisin B$_1$) for even a short period of time [3, 6, 7, 13, 14].

* Corresponding address : Dr. Mehmet Basalan University of Kirikkale, Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Kampus, 71450, Yahşihan, Kirikkale, Turkey, Phone : +90 318 3573301, Fax : +90 318 3573304, E-mail: mehmetbasalan@yahoo.com
Health problems associated with aflatoxin ingestion include immuno-suppression, mutagenity, teratogenity, cancer and liver damage [3, 13, 14, 18, 22]. Since the clinical signs of acute aflatoxicosis in affected livestock are not specific for aflatoxicosis [21], many field outbreaks go undiagnosed. Acute aflatoxicosis in dogs first defined as hepatitis X [13], later close resemblance of its symptoms to «moldy corn poisoning» in swine led the researchers to acute aflatoxin toxicosis [14]. However, the impact of chronic aflatoxicosis may even seem more drastic due to reduced productivity and increased susceptibility to infections of livestock [5].

The two animal species most sensitive to aflatoxicosis are rainbow trout and ducklings [5]. Although most organs are affected by acute or chronic exposure, liver is the primary organ affected with severe aflatoxicosis causing haemorrhagic necrosis, fatty infiltration and bile duct proliferation [3, 5, 13, 14]. Kidney lesions were detected in pigs fed high doses of aflatoxin B1 and ochratoxin A [21]. With cattle, ruminal motility (contraction frequency and amplitude) was altered by high doses of aflatoxin [4].

Poultry, swine and cattle feeds have been screened extensively for mycotoxins [7, 22]. Since mycotoxin production by specific fungi on agricultural commodities occur during storage, October to April was the predominant season for detection of aflatoxin B1 in dog feed [13] in South Africa [3], and poultry feed in Argentina [6]. Among the individual feedstuffs analysed for aflatoxin B1 and aflatoxin B2, ground corn and cottonseed cake had the highest aflatoxin concentrations. Fish meal was contaminated by aflatoxin B1 and aflatoxin B2 more frequently than wheat bran and soyabean meal [12]. Maize and grain by-product samples contained a very wide range in concentrations of aflatoxin B1, B2, G1 and G2 in Indonesia [17] presumably due to the tropical conditions ideal for fungal growth. ABARCA and his co-workers [1] pointed out that pelleted feeds for rabbits in Spain contained very low concentrations of mycotoxigenic fungi because of the heat and steam treatment associated with pelleting.

Few research studies have focused on mycotoxins in horse and pet foods possibly because productivity of such animals are rarely of interest. This study was designed to examine fungi presence and aflatoxin B1 concentrations in horse and dog feeds and to determine the correlation between fungi growth and aflatoxin B1 concentration in both feeds.

Material and methods

PREPARATION OF SAMPLES

Twenty samples of pelleted horse feeds and 21 samples of pelleted dog foods were collected from 19 different marketplaces including retail stores, factory outlets and contract dealers and 7 different manufacturing plants located in the Western region of Turkey. Samples were taken from storage immediately after being in 50 kg nylon bags. Samples collected from several bags were mixed together and held at 4°C for fungal and mycotoxin analysis the day after collection. Samples were kept in polyethylene bags until fungi counts were determined within 7 days of collection.

Fungi Counts

Rose-bengal chloramphenicol agar (16 g (Oxoid Co., Hampshire, UK) was suspended in 500 ml of distilled water; the mixture was well agitated and boiled to fully dissolve the agar. Then, contents of one vial of chloramphenicol selective supplement SR78 containing 0.05 g chloramphenicol were added. This was sterilised by autoclaving (Nuve San., Ankara, Turkey) at 121°C for 15 minutes and allowed to cool to 50°C. The media was mixed well and poured into sterile petri dishes (Sigma-Aldrich Chemie GmbH, Diesenhofen, Germany).

For culturing, 10 g of ground feed sample was added to 90 ml of 0.1 % peptone water, allowed to stand for 15 minutes, and shaken in a Seward stomacher (Cole parmer Co., Illinois, USA) for 15 minutes. Samples were collected randomly from various places of the stomacher. From this diluted sample, 0.1 ml was pipetted onto the surface of petri plates containing the rose bengal chloramphenicol agar base. The petri plates were incubated at 25°C for 5 to 7 days. All colonies without identification of specific fungi types were counted and multiplied by the dilution factor (100) to calculate Colony Forming Unit (CFU) for per g of animal feed. Duplicate samples from each feed culture were used to check repeatability of the sampling and incubation procedure.

Aflatoxin B1 Analysis

Methanol, n-heptane, dichloromethane and PBS-buffer (Sigma-Aldrich Chemie GmbH, Diesenhofen, Germany), pH 7.2 (0.55 g NaH2PO4 x H2O ; 2.85 g Na2HPO4 x 2H2O + 9 g NaCl diluted to 1000 ml with distilled water) were used. A finely ground sample (2 g) of each animal feed was weighed into a screw-top glass vial; 10 ml of methanol / distilled water (70 / 30) were added to each glass tube and tubes were shaken for 15 minutes. The suspension was filtered through paper filter (Whatman # 3) and 100 ml of the filtered suspension was transferred to a clean glass tube and 600 ml of the sample dilution buffer was added. A sample of the final suspension (50 ul) was pipetted into each well for the assay (Nubenco Inc., New Jersey, USA). Aflatoxin B1 (Catalog number A6636, Sigma-Aldrich Chemie GmbH, Diesenhofen, Germany) was used as a standard. The aflatoxin B1 concentration was calculated in μg/kg (ppb).

Statistical Analysis

For statistical analysis, the GLM procedure of SAS [19] was used. Mean fungi growth and aflatoxin B1 contents of the two different types of feed were compared by LSD. The correlation between fungi growth and aflatoxin B1 content was calculated within each feed type with a difference of P ≤ 0.05 being considered to be statistically significant.

Results and discussion

Main ingredients and nutrient contents of the horse feeds and dog foods as listed on the feed tag label are listed in Table I. Both feed types were dry and pelleted but ingredients ori-
ginated from different sources. Feedstuffs in the horse feeds were mainly agricultural crops and by-products whereas components of dog foods came from animal sources. This difference in ingredient sources may be responsible for the greater fungi growth and aflatoxin concentrations of dog food than horse feed.

The Agricultural Ministry of Turkey set the maximum allowable limits for fungi and aflatoxins in food sources and animal feeds in 1990 [2]. According to this standard, fungi contamination of the horse feed should not exceed 5.0x10^4 CFU/g, while dog food should not have any contamination with fungi. Mean fungi content of the horse feed was 0.97x10^4 +/-0.24x10^4 CFU/g so the average was lower than maximum tolerable limit and none of the 20 tested samples exceeded the maximum allowable limit (Figure 1). In contrast, nearly half of the tested dog food (10 out of 21) were contaminated with fungi and therefore would be considered unsafe for dogs to consume (Table II). Although the prevalence of individual fungal types was not identified, the presence of fungi suggests that these feeds may present a health hazard for animals.

Aflatoxin B1 content of horse feed averaged 1.98 (+/- 0.71) µg/kg while dog food averaged 6.69 (+/- 1.65) µg/kg. The maximum allowable limit for aflatoxin B1 in mixed feeds for horses and dogs was set at 10 µg/kg [5]. Dog feed contained more (p ≤ 0.05) aflatoxin B1 than horse feed, but neither horse feeds nor dog foods exceeded the legal limit.

In contrast to common assumptions, fungi growth and aflatoxin B1 did not correlate in either feed type (r² = 0.09 and r² = 0.30 for the horse feeds and dog food respectively) (Figure 2). This result supports the observation of FINK-GREMMELS [7] who cited that a feed might contain aflatoxin B1 even though it shows no fungal activity. Feeds previously contaminated with fungi might have aflatoxins but growth and survival of fungi may have been halted by fungicides or other means that kill fungi and fungal spores but do not destroy the mycotoxins.

Since horses are fed for their performance, low concentrations of fungi in feed might present a danger if the feed is stored over a large period of time under unfavorable conditions even though the fresh feed does not contain an amount of mycotoxin considered to be dangerous [6]. Effective surveillance of agricultural commodities during storage and transportation for prevention of fungi growth and mycotoxin contamination is needed. Presence of Aflatoxin B1 in horse feed indicates that improper storage conditions may have occurred prior to pelleting as heat treatment during pelleting would have destroyed the fungi but would not affect Aflatoxin B1. Samples collected from marketplaces might have been re-contaminated with fungi which produce aflatoxin B1.

Although the level of Aflatoxin B1 in feed ingredients in European community is set at 10 µg/kg, Netherlands has decreased this limit to 5 µg/kg [1]. If that ceiling were used, the mean Aflatoxin B1 concentration for the horse feeds would have exceeded that limit.

Table I. Guaranteed nutrient concentrations in pelleted feeds for horses and dogs, % DM.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Dog Food¹</th>
<th>Horse Feed¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td>Crude fat</td>
<td>18</td>
<td>na</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>4.5</td>
<td>11</td>
</tr>
<tr>
<td>Moisture</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Crude ash</td>
<td>na</td>
<td>8</td>
</tr>
<tr>
<td>Ca</td>
<td>na</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>na</td>
<td>0.6</td>
</tr>
<tr>
<td>Metabolizable Energy</td>
<td>na</td>
<td>2400</td>
</tr>
</tbody>
</table>

² horse feed contains grains and grain by-products, oil-seed meals, fats, starch by-products, limestone, dicalcium phosphate, salt, sodium bicarbonate, molasses, vitamin and mineral premixes

na = not available

Table II. Fungi growth and aflatoxin B1 concentrations of dog feeds.

<table>
<thead>
<tr>
<th>Fungi Growth</th>
<th>Aflatoxin B1 concentration (µg/kg)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0.45 0.015 2.7 0.1 0.3 0.58 20 9 9.5 4 3.5</td>
</tr>
<tr>
<td>+</td>
<td>3.4 2 4.5 2.2 3 3.5 24 23 15 9</td>
</tr>
</tbody>
</table>

² Correlation coefficients (r) = 0.30 between fungi and aflatoxin B1
Identification of specific aflatoxigenic strains of fungi would have increased the correlation between fungi count and aflatoxin concentration [1, 20]. A high fungi count (CFU/g) with low Aflatoxin B1 concentration could be attributed to presence of non-aflatoxigenic strains of fungi or suitable environmental conditions such as humidity, temperature and substrates. The opposite could be explained by contamination of feeds prior to stabilizing the feed or pelleting.

Since most horses are used for racing and other types of competition, it is hard to detect any adverse effects of feeding mouldy and mycotoxin-containing feeds unless clinical signs occur whereas performance depressions are readily detected with dairy cattle or poultry. However, serious health consequences beside low performance including respiratory infections and decreased immune responsiveness still might cause major economic loss so extraordinary attention should be paid for fungi infestation of horse feeds.

A similar scenario exists for dogs and their companionship with humans. In addition, several studies indicate that pet foods are consumed by humans because pet foods usually are economical, nutritionally balanced, and tasty. Based on such studies, health standards for pet foods should equal those of human foods. Concern for pets has resulted in stricter regulations for pet foods than feeds for production livestock. These regulations must be enforced. Diseases caused by aflatoxin B1 are usually irreversible and severe; characterized with neural, liver, and kidney damages, so surveillance of dog food is life-worthy. Another area that requires special attention is that dog diets are rich in protein and ingredients are derived from animals. Spoilage or fungi infestation of such ingredients might cause complex illnesses that are difficult or impossible to diagnose [21].

Contamination of the plant-animal-human food chain is difficult to control and must involve in various levels [16, 17]. Although quality control is difficult, preventing contamination is more fruitful than treating the many-fold health consequences of fungi [9, 22]. Risk areas for contamination should be identified correctly and fungal growth must be reduced by proper storage and handling of foods and feed and by producing high quality pellets [8] or adding chemicals [22] including phosphate [11] or ammonia treatment or adding adsorbants such as silica clay, or enzymes such as epoxidase and esterase [7].

In conclusion, horse feeds and dog foods should be inspected routinely for fungal growth. Potential for aflatoxin production also should be detected by valid testing as well as fungi identification procedures and tools. Considering the health hazards of mycotoxins, it is critically important to monitor animal foods for presence of mycotoxins and fungi.

Acknowledgements

The authors wish to express their appreciation to Dr. Fredric N. OWENS for final linguistic revision of the manuscript and his valuable comments.

References

